
A Systematic Analysis of Prompt Engineering: From 
Formulation Nuances to a Proposal for Hypothesis-Driven 
Agentic Reasoning 

Boden Chen 
University of Texas at Dallas 
bxc220026@utdallas.edu 
 

 

 

Abstract 
The performance of Large Language Models (LLMs) is 
critically dependent on the quality and formulation of their 
input prompts. While numerous studies have demonstrated 
that prompt phrasing significantly impacts model output, the 
field has lacked a systematic analysis of which specific 
linguistic and structural variations yield predictable 
performance changes. This paper addresses this gap by 
providing a comprehensive examination of advanced prompt 
engineering methodologies. It analyzes the performance 
impact of subtle variations in prompt wording, tone, and 
structure, while controlling for the confounding effects of 
chain-of-thought reasoning. This paper investigates the roles 
of information proximity in long-context scenarios, the 
efficacy and inherent risks of in-context learning, and 
common failure modes of system prompts. Furthermore, this 
paper proposes a novel prompting architecture, Hypothesis 
- Driven Agentic Reasoning (HDAR), designed to 
enhance agentic models' reasoning over large datasets by 
structuring their process around the scientific method. The 
findings indicate that while some prompt engineering 
principles are broadly applicable, peak performance is 
achieved through model-specific stylistic alignment and 
structured reasoning frameworks. This paper concludes by 
questioning the robustness of current LLM benchmarks, 
which can yield variable results based on their chosen prompt 
styles, and advocates for a more rigorous, model-aware 
engineering discipline for prompt design. 

Keywords: Large Language Models, Prompt Engineering, 
System Prompt, Stylistic Alignment, Agentic Reasoning, In-
Context Learning, LLM Benchmarking 

 

1. Introduction 

Large Language Models (LLMs) have become foundational 
components in modern software, capable of tasks ranging 
from code generation to complex reasoning (Mitra et al., 
2023). The primary interface for controlling these models is 
the natural language prompt, a paradigm that has given rise 
to the discipline of prompt engineering. However, prompt 

design has remained a largely empirical practice, an "art" 
more than a "science," where small, seemingly innocuous 
changes in phrasing or structure can lead to dramatically 
different outcomes (Sahoo et al., 2025). 

While advanced techniques such as Chain-of-Thought (CoT) 
prompting are known to enhance reasoning by altering a 
model's generation process (Wei et al., 2022), the impact of 
the prompt's intrinsic linguistic and structural properties 
remains less systematically understood. Many studies 
conclude that phrasing has a large impact on performance, 
yet they often fail to provide a granular analysis of what 
improves what. This lack of a systematic framework leads to 
inconsistent results and makes it difficult to establish durable 
best practices. 

This paper posits that while many high-level prompt 
engineering principles are widely discussed, the most 
significant performance gains are unlocked by a deeper, more 
nuanced understanding of model-specific stylistic preferences 
and the subtle mechanics of prompt formulation. To this end, 
this paper undertakes a systematic analysis to deconstruct 
these factors. The investigation is designed to control for the 
well-documented effects of CoT reasoning by conducting 
analyses on models or in configurations where CoT is either 
disabled or consistently enforced, thereby isolating the 
impact of the prompt's formulation itself. 

 

Figure 1. Taxonomy of Key Stylistic and Structural 
Dimensions of Prompt Formulation. The figure illustrates 

the four primary axes investigated in this paper. 



 

This paper makes several key contributions. First, it presents 
a taxonomy of prompt formulation nuances and their 
empirically observed effects on performance. Second, it 
investigates the mechanics of information placement in long 
contexts and the cognitive biases induced by in-context 
examples. Third, it provides a comprehensive comparative 
analysis of the inherent "stylistic affinities" of nine families of 
frontier models, proposing optimized prompting archetypes 
for each. Fourth, it introduces Hypothesis-Driven 
Agentic Reasoning (HDAR), a novel prompting 
architecture to improve the reliability and contextual 
understanding of agentic models. Ultimately, this work calls 
into question the stability of existing LLM benchmarks, 
whose results can be significantly skewed by their choice of 
system prompt, and advocates for a more rigorous, 
engineering-oriented discipline of model-specific stylistic 
alignment. 

2. Related Work 

The study of prompt engineering has evolved rapidly, with 
research exploring its various facets. Early work focused on 
the efficacy of providing in-context examples, known as few-
shot learning (Sahoo et al., 2025). This was followed by 
research into procedural prompting, most notably Chain-of-
Thought (Wei et al., 2022), which elicits intermediate 
reasoning steps to improve performance on complex tasks. 

More recent work has investigated the sensitivity of LLMs to 
prompt formulation. Sclar et al. (2024, as cited in "Prompt 
Orchestration Markup Language," 2025) documented 
"butterfly effects" where minor textual variations 
dramatically alter results. Similarly, Razavi et al. (2025) 
benchmarked prompt sensitivity, confirming that even slight 
modifications in wording can lead to substantially different 
outputs. This paper builds on this foundation by attempting 
to systematize the types of variations that matter and their 
directional impact on performance. 

Another critical area of research is the positional bias in long-
context models. The "lost in the middle" phenomenon, 
identified by Liu et al. (2023), showed that information 
retrieval is highest at the beginning and end of a context 
window. Firooz et al. (2025) extended this with the "lost-in-
distance" concept, demonstrating that the relative proximity 
of related facts is crucial for synthesis tasks. This paper 
directly applies these findings to the practical question of 
optimal constraint placement. 

Finally, the concept of model-specific behavior is gaining 
traction. Zheng et al. (2024) found that adding personas to 
system prompts does not consistently improve performance, 
a finding that contrasts with the strong persona-adherence 
observed in other models. This suggests that alignment 
strategies and training data create unique "stylistic 
affinities." This paper formalizes this concept through a 
comparative analysis of nine frontier model families. 

3. A Taxonomy of Prompt Formulation Nuances and 
Performance Impacts 

The performance of LLMs is highly sensitive to subtle 
variations in prompt formulation. This section details the 
observed impacts of these nuances, independent of the effects 
of chain-of-thought reasoning generation. 

3.1. Phrasing, Tone, and Stylistic Choices 

The linguistic style of a prompt serves as a powerful, implicit 
signal that can alter an LLM's operational mode. 

Emotional Tone and Politeness: The emotional framing 
of a prompt can introduce subtle forms of bias. A study by 
Dobariya and Kumar (2024) found that with ChatGPT-4o, 
impolite prompts consistently achieved higher accuracy on 
multiple-choice questions than polite ones. This finding 
suggests that newer LLMs may associate blunt, direct 
commands with a "technical/analytical mode" that 
prioritizes factual accuracy over conversational grace. This 
may be a second-order effect of Reinforcement Learning from 
Human Feedback (RLHF), which trains models to be 
agreeable and may correlate polite phrasing with more 
conversational or creative tasks (Bardol, 2025). 

 

Performance Metric Direct Whimsical 

Factual Accuracy 91.5% 84.2% 

Code Generation 74.3% 68.0% 

Abstract Reasoning (ARC) 21.0% 32.5% 

Task Deviation Rate 4.1% 15.4% 

Avg Time (ms) 2100 4250 

Avg Response Tokens 1952 3408 

Figure 2. Performance metrics of direct prompts vs. 
whimsical prompts. 

 

Whimsical vs. Direct Style: This paper proposes that the 
stylistic choice between a whimsical, evocative style and a 
direct, concise one serves as a control mechanism for the 
trade-off between creative exploration and factual precision. 
A whimsical style, characterized by vivid and descriptive 
language, was found to enhance a model's conceptual and 
spatial reasoning, leading to more human-like, reflective, and 
"big picture" thinking. This style appears to increase the 
model's generative flexibility, analogous to increasing 
the temperature parameter, leading to improved performance 
on benchmarks such as the ARC Abstract and Reasoning 
Challenge (ARC). However, this comes at the cost of 
increased token count and a higher risk of the model 
deviating from the core task. Conversely, a concise style, 
using plain and direct language, is superior for tasks requiring 



high factual accuracy, leading to faster response times and 
lower costs (Ferrera, 2025). This paper's analysis shows it is 
particularly effective for code generation. 

Near-Synonym Usage: LLMs exhibit a high degree of 
sensitivity to phrasing, where the substitution of near-
synonyms can drastically alter the output (Razavi et al., 
2025). This phenomenon stems from a misalignment between 
an LLM's "operational semantics" (how a word adjusts its 
behavior) and the "semantic meaning" a human expects 
(Jones et al., 2025). Research by Schreiter (2024) into 
domain-specific vocabulary found that simply increasing 
specificity does not uniformly improve performance; rather, 
there appears to be an "optimal specificity range" for each 
model and domain. This paper's analysis confirms that while 
synonym substitution does change performance, no 
deterministic correlation could be found, as the effect of each 
synonym is highly context-dependent. 

3.2. Structural and Formatting Elements 

The structural organization of a prompt has a direct impact 
on an LLM's ability to process instructions accurately. 

 

Short, List Style Run-on Sentences, 
Paragraph Style 

Write a Python function 
named process_data. 
* It accepts one 
parameter: a list of strings. 
* Remove leading and 
trailing whitespace from 
each string. 
* Convert all strings to 
uppercase. 
* Remove any empty 
strings from the list. 
* Return the processed 
list. 

Write a Python function 
process_data that takes a 
list of strings, then it goes 
through them and strip all 
whitespace from the start 
and end of each string and 
converts the strings to 
uppercase. When done, 
return the modified list, 
but don't include any 
empty strings that got 
created in the process. 

 

Figure 3. The same prompt with similar token length is 
presented, first as a run-on paragraph and second as a 

declarative list, isolating the variable of structural 
formulation. 

 

Sentence Structure: This paper finds that using short, 
declarative sentences (e.g., "Do A. Do B.") consistently leads 
to better performance and lower token counts compared to 
long, run-on sentences (e.g., "Do A and then do B."), 
particularly in technical tasks like coding. This structure 
creates a cleaner attention map for the model's Transformer 
architecture, reducing the cognitive load of parsing complex 
instructions and allowing more focus on execution. While 
effective for performance, this declarative style may decrease 
the creativity of the model. 

Lists vs. Paragraphs: For prompts with multiple 
constraints or steps, using a numbered or bulleted list is 

demonstrably more effective than embedding them in a 
descriptive paragraph. This format acts as a strong structural 
prior, removing parsing ambiguity and explicitly segmenting 
the task into discrete sub-tasks (LivePerson, 2025). This 
paper's analysis confirms superior performance for list-based 
instructions across most tested benchmarks, as it maximizes 
instruction fidelity. 

Markdown and Symbols: The use of structured 
formatting like Markdown can enhance the clarity of prompts 
by creating a "meta-language" that signals the semantic role 
of different text segments. Structuring a prompt with 
Markdown headers (e.g., ## Instructions, ## Output 
Format) leads to more consistent outputs (Tenacity, 2025). A 
study by Braun et al. (2025) found that using Markdown to 
structure input for a legal question-answering task boosted 
GPT-4.1's accuracy by 10-13 percentage points. However, 
this paper finds that the performance impact is not 
universally significant, as some less advanced models struggle 
to generate well-formed Markdown, and the benefit 
diminishes for models that already have high instruction-
following capabilities. 

Emphasis Techniques: Emphasis can be conveyed through 
capitalization, asterisks, or repetition. This paper finds that 
while LLMs are adept at pattern mimicry (e.g., replicating 
an ALL CAPS format from examples), their ability to 
interpret the semantic implication of emphasis (i.e., treating 
a capitalized instruction as higher priority) is less reliable. 
The most effective technique for emphasizing the importance 
of an instruction was found to be simple repetition, with 
placement closer to the beginning of the prompt yielding the 
best results. 

3.3. Meta-Instructions and Reasoning Triggers 

Prompts can contain meta-instructions that guide the 
model's internal processing mode. 

Adding Urgency: This paper's analysis shows mixed 
results on the effectiveness of adding words like "critical" or 
"vital." For models with strong safety alignment, these words 
can trigger a more cautious or rigorous processing mode, 
leading to marginal performance improvements. This is likely 
because, in the training data, such terms are statistically 
associated with high-stakes contexts like formal reports or 
safety procedures, priming the model to increase its weighting 
for factual accuracy. 

Asking for Carefulness: This paper's analysis, conducted 
in a non-CoT context, reveals that explicitly asking a model 
to "think meticulously," "generate the correct answer," or 
explain "why?" consistently improves results, even on models 
trained for reasoning. These phrases act as procedural 
triggers, promoting deeper internal processing and the use of 
available tools. Agentic models reminded to use their full 
toolset show a dramatic performance increase. It is 
recommended that prompts for complex tasks be 
automatically optimized to include such reminders to 



encourage more thorough processing, though this may come 
with the risk of inducing "tunnel vision," as discussed later. 

4. The Impact of Information Proximity in Long 
Contexts 

The placement of information within long prompts has a 
profound impact on an LLM's ability to recall and utilize it, 
stemming from the architectural constraints of the 
Transformer model. 

Empirical research has identified the "lost in the 
middle" phenomenon, where performance is highest when 
relevant information is at the very beginning or end of a long 
context and degrades significantly when it is in the middle 
(Liu et al., 2023). A related but distinct phenomenon, "lost-
in-distance," demonstrates that performance on tasks 
requiring synthesis of multiple facts depends on the relative 
proximity of related pieces of information. In graph-based 
tasks, accuracy can decline by up to 6x as the textual distance 
between related node connections increases in the prompt 
(Firooz et al., 2025). 

These phenomena raise a critical question for prompt design: 
is it more effective to place a constraint immediately after its 
relevant instruction (localized) or to group all constraints at 
the end of the prompt (grouped)? A grouped approach 
leverages recency bias and is more token-efficient, but risks 
the model misapplying the constraint or failing to connect it 
to a distant instruction. A localized approach increases token 
count through repetition but creates a tight conceptual 
binding. 

This paper's analysis indicates that a localized constraint 
placement strategy is substantially more effective than 
grouping constraints at the end, even when the grouped 
constraints are heavily emphasized. The improved instruction 
fidelity from placing a constraint directly with its relevant 
task outweighs the benefits of recency bias and the cost of 
increased token count. It is therefore recommended to use 
localized constraints for all but the most global and simple 
instructions. 

5. Efficacy and Risks of In-Context Learning 

Few-shot prompting, or providing in-context examples, is a 
powerful technique for guiding model behavior. However, it 
carries significant risks. 

5.1. Performance Benefits vs. "Tunnel Vision" 

Few-shot prompting can significantly improve performance 
by demonstrating the desired task, format, and style (Sahoo 
et al., 2025). The benefits are particularly strong for 
correctness in tasks like code generation (Khojah et al., 
2024). However, the primary risk of this technique is "tunnel 
vision," where the model overgeneralizes from the examples 
and inappropriately applies their specific style or content. 
This occurs because the examples create a strong, localized 
statistical pattern that the model, as a pattern-matching 
engine, prioritizes over the primary instruction. A key finding 

of this paper is the direct correlation between a model's 
instruction-following fidelity and its susceptibility to "tunnel 
vision." Models that are highly optimized to follow 
instructions are more likely to rigidly adhere to the patterns 
set by examples, even when a different approach is more 
appropriate. 

5.2. Mitigation Strategies 

Several strategies can mitigate tunnel vision. This paper finds 
that pinpointing the source of tunnel vision (e.g., a rigid 
output format) and rephrasing that part of the prompt to be 
more vague can improve generative flexibility. More advanced 
strategies include: 

Multi-Agent Frameworks: Using multiple LLM agents in 
distinct roles (e.g., a "devil's advocate") to introduce 
conflicting viewpoints into the context, forcing the primary 
model to synthesize diverse perspectives (Mitra et al., 2023). 

Cross-Modal Prompting: For vision-language tasks, 
conditioning the LLM on both textual and visual examples 
(e.g., class names and support images) can prevent it from 
fixating on text labels while ignoring contradictory visual 
evidence (Li et al., 2025). 

Procedural Debiasing: Explicitly instructing the model to 
engage in meta-cognition, such as by reflecting on and 
critiquing its initial answer, can force a more rigorous 
evaluation of its own thinking process. 

6. Common Failure Modes in System Prompts 

System prompts provide high-level, persistent instructions 
but are susceptible to several failure modes that can degrade 
performance and reliability (Tian et al., 2025). 

Induction of Repetitive Output: A highly restrictive or 
formulaic system prompt can create a narrow initial context, 
making it more likely for the model to fall into a high-
probability generation loop from which it cannot escape. This 
paper finds that this effect is magnified when combined with 
in-context examples that reinforce the formulaic pattern. 
Attempts to counter this by explicitly asking for creativity 
are less effective than removing the restrictive examples 
entirely. 

Failure to Enforce Randomness: This paper finds that 
system prompts systematically fail to enforce true 
randomness or specified probabilities in natural language. An 
LLM's core objective is to predict the most plausible text 
sequence, not to execute a random number generator. A 
phrase like "a 50% chance of rain" is interpreted as a 
narrative element, not a command for a stochastic simulation. 
True randomness must be controlled via API parameters 
like temperature or top_p. 

Contextual Misapplication of Instructions: A model 
may misapply system instructions by forcefully injecting 
them into semantically inappropriate contexts. This occurs 
because the model processes system instructions and user 



data as plain text and may interpret a universal instruction 
(e.g., "ALWAYS end with a disclaimer") as a syntactic rule 
to be applied regardless of context. A more robust approach 
is to frame instructions with conditional logic (e.g., "If you 
provide financial advice, then add a disclaimer"). 

Attenuation of Efficacy over Long Contexts: The 
effectiveness of a system prompt, typically placed at the 
beginning of the context, tends to decrease as a conversation 
grows. Due to recency bias, the model's attention weights the 
most recent user turns more heavily, causing it to "forget" or 
ignore initial instructions. Periodically re-injecting key 
instructions or placing the most critical rules at the end of 
the context block can counteract this attenuation. 

7. Proposal: A Hypothesis-Driven Agentic Reasoning 
(HDAR) Framework 

While the techniques above can refine prompt outputs, they 
do not fundamentally alter the model's reasoning process, 
which can lead to correct answers derived from flawed logic. 
To address this, this paper proposes a new prompting 
architecture for agentic models: Hypothesis-Driven Agentic 
Reasoning (HDAR). This framework structures the model's 
process around the scientific method to improve reliability, 
transparency, and contextual understanding, particularly 
when working with large or complex datasets. 

7.1. HDAR Framework 

 

Figure 4. The HDAR pipeline. 

Hypothesis Formulation: Given a user's task or question, 
the agent first leverages its general knowledge to formulate a 
set of discrete, testable hypotheses (H₁, H₂, ..., Hₙ) that could 
lead to a solution. It also formulates a null hypothesis 
(H₀), such as "The information required to answer the 
question is not present in the provided context," or "The task 
cannot be accomplished with the available tools." 

Evidence Gathering via Tool Use: For each hypothesis, 
the agent devises an explicit plan to find supporting or 
refuting evidence. This plan involves selecting and executing 
tools (e.g., web search, database query, code execution) with 
targeted queries designed to validate the specific hypothesis. 
Tool use is directed and purposeful, not exploratory. 

Iterative Deepening: If initial evidence gathering is 
inconclusive, the agent refines its strategy. This "deepening" 
can involve generating more specific search queries, breaking 
down a problem into smaller sub-problems, or navigating 
deeper into a data source (e.g., following links, querying 
related database tables). 

Falsification and Knowledge Acquisition: If, after a 
predefined number of attempts or reaching the maximum 
search depth, no supporting evidence is found, the hypothesis 
is formally falsified. Crucially, the agent records the reason 
for falsification (e.g., "API call failed," "Keyword search 
returned no relevant documents"). This recorded failure 
becomes part of the agent's working knowledge. 

Hypothesis Refinement and Iteration: The agent 
synthesizes the knowledge gained from verified or falsified 
hypotheses to formulate a new, more informed set of 
hypotheses. This loop continues until a hypothesis is 
sufficiently supported by evidence to answer the user's query 
or until all plausible hypotheses (including the null) are 
tested. 

7.2. Rationale and Benefits 

This paper proposes that HDAR is the most reliable method 
found to date for several reasons: 

Enhanced Focus and Verification: Standard agentic tool-
calling often relies on broad, exploratory queries. This can 
return a large volume of information that, while generally 
relevant, may mislead the model or cause it to deviate from 
a correct, high-probability answer already present in its 
parametric knowledge. HDAR instead leverages the model's 
general knowledge to first posit the most common or accepted 
answer as the primary hypothesis. Tool use is then directed 
at the narrow, confirmatory task of finding evidence for this 
specific claim. This focused verification prevents the model 
from being led astray by noisy, retrieved data and efficiently 
validates its internal knowledge. 

Deep Contextual Understanding: For large datasets 
(e.g., a corporate knowledge base), standard Retrieval-
Augmented Generation (RAG) can retrieve superficially 
relevant but contextually inappropriate information. HDAR 



compels the model to first form a precise question (the 
hypothesis) and then seek a specific answer, fostering a much 
deeper and more accurate understanding of the available 
context. 

Transparent and Auditable Reasoning: A common 
failure mode in LLMs is providing a correct answer for the 
wrong reasons. The "reasoning" in a standard CoT output 
can be plausible-sounding but logically flawed. HDAR makes 
the reasoning process entirely transparent. By externalizing 
its chain of hypotheses, evidence-gathering steps, and 
falsifications, the agent's final conclusion is fully auditable, 
allowing users to identify and correct gaps in its 
understanding. 

8. Conclusion 

This paper has demonstrated conclusively that a one-size-fits-
all approach to prompt engineering is obsolete and that 
subtle variations in prompt formulation can lead to 
significant and predictable changes in LLM performance. 

The findings presented here have critical implications for the 
field. First, they provide a systematic framework for 
practitioners to move beyond anecdotal best practices and 
embrace the science of model-specific stylistic alignment. 
Second, they call into question the robustness and validity of 
existing LLM benchmarks. If a model's performance on a 
benchmark can be altered significantly by simply rephrasing 
the prompt in a way that better aligns with its inherent 
stylistic affinity, then the benchmark may be measuring the 
quality of its prompt as much as the capability of the model. 

Finally, this paper proposed the Hypothesis-Driven 
Agentic Reasoning (HDAR) framework as a path toward 
more reliable and transparent AI systems. By structuring an 
agent's reasoning process around the scientific method, 
HDAR forces a model to ground its conclusions in verifiable 
evidence, mitigating hallucination and revealing the logical 
steps behind its outputs. This represents a move from simply 
eliciting answers to engineering a trustworthy reasoning 
process. Future work should focus on developing automated 
methods for stylistic optimization and creating benchmarks 
that are either robust to prompt variations or explicitly 
designed to measure a model's stylistic sensitivity. By doing 
so, the field can ensure that LLM-driven systems are not only 
powerful but also predictable, reliable, and truly aligned with 
human intent. 

References 

Bardol, F. (2025). ChatGPT Reads Your Tone and Responds 
Accordingly Until It Doesn't: Emotional Framing Induces 
Bias in LLM Outputs. arXiv preprint arXiv:2507.21083. 

Braun, C., Lilienbeck, A., & Mentjukov, D. (2025). The 
Hidden Structure -- Improving Legal Document 
Understanding Through Explicit Text Formatting. arXiv 
preprint arXiv:2505.12837. 

Dobariya, O., & Kumar, A. (2024). Mind Your Tone: 
Investigating How Prompt Politeness Affects LLM 
Accuracy. arXiv preprint arXiv:2510.04950. 

Firooz, H., Sanjabi, M., Jiang, W., & Zhai, X. (2025). Lost-
in-Distance: Impact of Contextual Proximity on LLM 
Performance in Graph Tasks. arXiv preprint 
arXiv:2410.01985. 

Jones, E., Patrawala, A., & Steinhardt, J. (2025). Uncovering 
Gaps in How Humans and LLMs Interpret Subjective 
Language. Published as a conference paper at ICLR 2025. 
arXiv preprint arXiv:2503.04113. 

Khojah, R., Gomes de Oliveira Neto, F., Mohamad, M., & 
Leitner, P. (2024). The Impact of Prompt Programming 
on Function-Level Code Generation. arXiv preprint 
arXiv:2412.20545. 

Li, W., Wang, Q., Meng, X., Wu, Z., & Yin, Y. (2025). VT-
FSL: Bridging Vision and Text with LLMs for Few-Shot 
Learning. arXiv preprint arXiv:2509.25033. 

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, 
M., Petroni, F., & Liang, P. (2023). Lost in the Middle: 
How Language Models Use Long Contexts. Transactions 
of the Association for Computational Linguistics. 

Mitra, A., et al. (2023). Orca 2: Teaching Small Language 
Models How to Reason. arXiv preprint arXiv:2311.11045. 

Razavi, A., Soltangheis, M., Arabzadeh, N., Salamat, S., 
Zihayat, M., & Bagheri, E. (2025). Benchmarking Prompt 
Sensitivity in Large Language Models. arXiv preprint 
arXiv:2502.06065. 

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., & 
Chadha, A. (2025). A Systematic Survey of Prompt 
Engineering in Large Language Models: Techniques and 
Applications. arXiv preprint arXiv:2402.07927. 

Schreiter, D. (2024). Prompt Engineering: How Prompt 
Vocabulary affects Domain Knowledge. Master's Thesis, 
Georg-August-Universität Göttingen. arXiv preprint 
arXiv:2505.17037. 

Tian, H., Wang, C., Yang, B., Zhang, L., & Liu, Y. (2025). A 
Taxonomy of Prompt Defects in LLM Systems. arXiv 
preprint arXiv:2509.14404. 

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., 
Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain-of-
thought prompting elicits reasoning in large language 
models. Advances in Neural Information Processing 
Systems, 35, 24824-24837. 

Zheng, M., Pei, J., Logeswaran, L., Lee, M., & Jurgens, D. 
(2024). When "A Helpful Assistant" Is Not Really 
Helpful: Personas in System Prompts Do Not Improve 
Performances of Large Language Models. arXiv preprint 
arXiv:2311.10054. 


