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Abstract

The performance of Large Language Models (LLMs) is
critically dependent on the quality and formulation of their
input prompts. While numerous studies have demonstrated
that prompt phrasing significantly impacts model output, the
field has lacked a systematic analysis of which specific
linguistic and structural variations yield predictable
performance changes. This paper addresses this gap by
providing a comprehensive examination of advanced prompt
engineering methodologies. It analyzes the performance
impact of subtle variations in prompt wording, tone, and
structure, while controlling for the confounding effects of
chain-of-thought reasoning. This paper investigates the roles
of information proximity in long-context scenarios, the
efficacy and inherent risks of in-context learning, and
common failure modes of system prompts. Furthermore, this
paper proposes a novel prompting architecture, Hypothesis
- Driven Agentic Reasoning (HDAR), designed to
enhance agentic models' reasoning over large datasets by
structuring their process around the scientific method. The
findings indicate that while some prompt engineering
principles are broadly applicable, peak performance is
achieved through model-specific stylistic alignment and
structured reasoning frameworks. This paper concludes by
questioning the robustness of current LLM benchmarks,
which can yield variable results based on their chosen prompt
styles, and advocates for a more rigorous, model-aware
engineering discipline for prompt design.
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1. Introduction

Large Language Models (LLMs) have become foundational
components in modern software, capable of tasks ranging
from code generation to complex reasoning (Mitra et al.,
2023). The primary interface for controlling these models is
the natural language prompt, a paradigm that has given rise
to the discipline of prompt engineering. However, prompt

design has remained a largely empirical practice, an "art"
more than a "science," where small, seemingly innocuous
changes in phrasing or structure can lead to dramatically
different outcomes (Sahoo et al., 2025).

While advanced techniques such as Chain-of-Thought (CoT)
prompting are known to enhance reasoning by altering a
model's generation process (Wei et al., 2022), the impact of
the prompt's intrinsic linguistic and structural properties
remains less systematically understood. Many studies
conclude that phrasing has a large impact on performance,
yet they often fail to provide a granular analysis of what
improves what. This lack of a systematic framework leads to
inconsistent results and makes it difficult to establish durable
best practices.

This paper posits that while many high-level prompt
engineering principles are widely discussed, the most
significant performance gains are unlocked by a deeper, more
nuanced understanding of model-specific stylistic preferences
and the subtle mechanics of prompt formulation. To this end,
this paper undertakes a systematic analysis to deconstruct
these factors. The investigation is designed to control for the
well-documented effects of CoT reasoning by conducting
analyses on models or in configurations where CoT is either
disabled or consistently enforced, thereby isolating the
impact of the prompt's formulation itself.

Prompt Style Scales

Dimensions examined in the prompt formulation analysis

Tone Impolite | 4 | Polite
Creativity Direct | } | Whimsical
Structure Declarative | 1 | Run-on
Layout Lists | ! | Paragraphs

Figure 1. Taxonomy of Key Stylistic and Structural
Dimensions of Prompt Formulation. The figure illustrates
the four primary axes investigated in this paper.



This paper makes several key contributions. First, it presents
a taxonomy of prompt formulation nuances and their
empirically observed effects on performance. Second, it
investigates the mechanics of information placement in long
contexts and the cognitive biases induced by in-context
examples. Third, it provides a comprehensive comparative
analysis of the inherent "stylistic affinities" of nine families of
frontier models, proposing optimized prompting archetypes
for each. Fourth, it introduces Hypothesis-Driven
Agentic Reasoning (HDAR), a novel prompting
architecture to improve the reliability and contextual
understanding of agentic models. Ultimately, this work calls
into question the stability of existing LLM benchmarks,
whose results can be significantly skewed by their choice of
system prompt, and advocates for a more rigorous,
engineering-oriented discipline of model-specific stylistic
alignment.

2. Related Work

The study of prompt engineering has evolved rapidly, with
research exploring its various facets. Early work focused on
the efficacy of providing in-context examples, known as few-
shot learning (Sahoo et al., 2025). This was followed by
research into procedural prompting, most notably Chain-of-
Thought (Wei et al., 2022), which elicits intermediate
reasoning steps to improve performance on complex tasks.

More recent work has investigated the sensitivity of LLMs to
prompt formulation. Sclar et al. (2024, as cited in "Prompt
Orchestration Markup Language," 2025) documented
"butterfly effects" where minor textual variations
dramatically alter results. Similarly, Razavi et al. (2025)
benchmarked prompt sensitivity, confirming that even slight
modifications in wording can lead to substantially different
outputs. This paper builds on this foundation by attempting
to systematize the types of variations that matter and their
directional impact on performance.

Another critical area of research is the positional bias in long-
context models. The "lost in the middle" phenomenon,
identified by Liu et al. (2023), showed that information
retrieval is highest at the beginning and end of a context
window. Firooz et al. (2025) extended this with the "lost-in-
distance" concept, demonstrating that the relative proximity
of related facts is crucial for synthesis tasks. This paper
directly applies these findings to the practical question of
optimal constraint placement.

Finally, the concept of model-specific behavior is gaining
traction. Zheng et al. (2024) found that adding personas to
system prompts does not consistently improve performance,
a finding that contrasts with the strong persona-adherence
observed in other models. This suggests that alignment
strategies and training data create unique "stylistic
affinities." This paper formalizes this concept through a
comparative analysis of nine frontier model families.

3. A Taxonomy of Prompt Formulation Nuances and

Performance Impacts

The performance of LLMs is highly sensitive to subtle
variations in prompt formulation. This section details the
observed impacts of these nuances, independent of the effects
of chain-of-thought reasoning generation.

3.1. Phrasing, Tone, and Stylistic Choices

The linguistic style of a prompt serves as a powerful, implicit
signal that can alter an LLM's operational mode.

Emotional Tone and Politeness: The emotional framing
of a prompt can introduce subtle forms of bias. A study by
Dobariya and Kumar (2024) found that with ChatGPT-4o,
impolite prompts consistently achieved higher accuracy on
multiple-choice questions than polite ones. This finding
suggests that newer LLMs may associate blunt, direct
commands with a "technical/analytical mode" that
prioritizes factual accuracy over conversational grace. This
may be a second-order effect of Reinforcement Learning from
Human Feedback (RLHF), which trains models to be
agreeable and may correlate polite phrasing with more
conversational or creative tasks (Bardol, 2025).

Performance Metric Direct Whimsical
Factual Accuracy 91.5%  84.2%
Code Generation 74.3%  68.0%

Abstract Reasoning (ARC) 21.0% 32.5%

Task Deviation Rate 4.1% 15.4%
Avg Time (ms) 2100 4250
Avg Response Tokens 1952 3408

Figure 2. Performance metrics of direct prompts vs.

whimsical prompts.

Whimsical vs. Direct Style: This paper proposes that the
stylistic choice between a whimsical, evocative style and a
direct, concise one serves as a control mechanism for the
trade-off between creative exploration and factual precision.
A whimsical style, characterized by vivid and descriptive
language, was found to enhance a model's conceptual and
spatial reasoning, leading to more human-like, reflective, and
"big picture" thinking. This style appears to increase the
model's generative flexibility, analogous to increasing
the temperature parameter, leading to improved performance
on benchmarks such as the ARC Abstract and Reasoning
Challenge (ARC). However, this comes at the cost of
increased token count and a higher risk of the model
deviating from the core task. Conversely, a concise style,
using plain and direct language, is superior for tasks requiring



high factual accuracy, leading to faster response times and
lower costs (Ferrera, 2025). This paper's analysis shows it is
particularly effective for code generation.

Near-Synonym Usage: LLMs exhibit a high degree of
sensitivity to phrasing, where the substitution of near-
synonyms can drastically alter the output (Razavi et al.,
2025). This phenomenon stems from a misalignment between
an LLM's "operational semantics" (how a word adjusts its
behavior) and the "semantic meaning" a human expects
(Jones et al., 2025). Research by Schreiter (2024) into
domain-specific vocabulary found that simply increasing
specificity does not uniformly improve performance; rather,
there appears to be an "optimal specificity range" for each
model and domain. This paper's analysis confirms that while
synonym substitution does change performance, no
deterministic correlation could be found, as the effect of each
synonym is highly context-dependent.

3.2. Structural and Formatting Elements

The structural organization of a prompt has a direct impact
on an LLM's ability to process instructions accurately.

Short, List Style

Run-on Sentences,
Paragraph Style

Write a Python function
named process data.
* Tt accepts one

parameter: a list of strings.

* Remove leading and
trailing whitespace from
each string.

* Convert all strings to
uppercase.

* Remove any empty
strings from the list.

* Return the processed
list.

Write a Python function
process data that takes a
list of strings, then it goes
through them and strip all
whitespace from the start
and end of each string and
converts the strings to
uppercase. When done,
return the modified list,
but don't include any
empty strings that got
created in the process.

Figure 3. The same prompt with similar token length is

presented, first as a run-on paragraph and second as a
declarative list, isolating the variable of structural

formulation.

Sentence Structure: This paper finds that using short,
declarative sentences (e.g., "Do A. Do B.") consistently leads
to better performance and lower token counts compared to
long, run-on sentences (e.g., "Do A and then do B."),
particularly in technical tasks like coding. This structure
creates a cleaner attention map for the model's Transformer
architecture, reducing the cognitive load of parsing complex
instructions and allowing more focus on execution. While
effective for performance, this declarative style may decrease
the creativity of the model.

Lists vs. Paragraphs: For prompts with multiple

constraints or steps, using a numbered or bulleted list is

demonstrably more effective than embedding them in a
descriptive paragraph. This format acts as a strong structural
prior, removing parsing ambiguity and explicitly segmenting
the task into discrete sub-tasks (LivePerson, 2025). This
paper's analysis confirms superior performance for list-based
instructions across most tested benchmarks, as it maximizes
instruction fidelity.

Markdown and Symbols: The wuse of structured
formatting like Markdown can enhance the clarity of prompts
by creating a "meta-language" that signals the semantic role
of different text segments. Structuring a prompt with
Markdown headers (e.g., ## Instructions, ## Output
Format) leads to more consistent outputs (Tenacity, 2025). A
study by Braun et al. (2025) found that using Markdown to
structure input for a legal question-answering task boosted
GPT-4.1's accuracy by 10-13 percentage points. However,
this paper finds that the performance impact is not
universally significant, as some less advanced models struggle
to generate well-formed Markdown, and the benefit
diminishes for models that already have high instruction-
following capabilities.

Emphasis Techniques: Emphasis can be conveyed through
capitalization, asterisks, or repetition. This paper finds that
while LLMs are adept at pattern mimicry (e.g., replicating
an ALL CAPS format from examples), their ability to
interpret the semantic implication of emphasis (i.e., treating
a capitalized instruction as higher priority) is less reliable.
The most effective technique for emphasizing the importance
of an instruction was found to be simple repetition, with
placement closer to the beginning of the prompt yielding the
best results.

3.3. Meta-Instructions and Reasoning Triggers

Prompts can contain meta-instructions that guide the
model's internal processing mode.

Adding Urgency: This paper's analysis shows mixed
results on the effectiveness of adding words like "critical" or
"vital." For models with strong safety alignment, these words
can trigger a more cautious or rigorous processing mode,
leading to marginal performance improvements. This is likely
because, in the training data, such terms are statistically
associated with high-stakes contexts like formal reports or
safety procedures, priming the model to increase its weighting
for factual accuracy.

Asking for Carefulness: This paper's analysis, conducted
in a non-CoT context, reveals that explicitly asking a model
to "think meticulously," "
explain "why?" consistently improves results, even on models

generate the correct answer," or

trained for reasoning. These phrases act as procedural
triggers, promoting deeper internal processing and the use of
available tools. Agentic models reminded to use their full
toolset show a dramatic performance increase. It is
recommended that prompts for complex tasks be
automatically optimized to include such reminders to



encourage more thorough processing, though this may come
with the risk of inducing "tunnel vision," as discussed later.

4. The Impact of Information Proximity in Long

Contexts

The placement of information within long prompts has a
profound impact on an LLM's ability to recall and utilize it,
stemming from the architectural constraints of the
Transformer model.

Empirical research has identified the "lost in the
middle" phenomenon, where performance is highest when
relevant information is at the very beginning or end of a long
context and degrades significantly when it is in the middle
(Liu et al., 2023). A related but distinct phenomenon, "lost-
in-distance," demonstrates that performance on tasks
requiring synthesis of multiple facts depends on the relative
proximity of related pieces of information. In graph-based
tasks, accuracy can decline by up to 6x as the textual distance
between related node connections increases in the prompt
(Firooz et al., 2025).

These phenomena raise a critical question for prompt design:
is it more effective to place a constraint immediately after its
relevant instruction (localized) or to group all constraints at
the end of the prompt (grouped)? A grouped approach
leverages recency bias and is more token-efficient, but risks
the model misapplying the constraint or failing to connect it
to a distant instruction. A localized approach increases token
count through repetition but creates a tight conceptual
binding.

This paper's analysis indicates that a localized constraint
placement strategy is substantially more effective than
grouping constraints at the end, even when the grouped
constraints are heavily emphasized. The improved instruction
fidelity from placing a constraint directly with its relevant
task outweighs the benefits of recency bias and the cost of
increased token count. It is therefore recommended to use
localized constraints for all but the most global and simple
instructions.

5. Efficacy and Risks of In-Context Learning

Few-shot prompting, or providing in-context examples, is a
powerful technique for guiding model behavior. However, it
carries significant risks.

5.1. Performance Benefits vs. "Tunnel Vision"

Few-shot prompting can significantly improve performance
by demonstrating the desired task, format, and style (Sahoo
et al., 2025). The benefits are particularly strong for
correctness in tasks like code generation (Khojah et al.,
2024). However, the primary risk of this technique is "tunnel

" where the model overgeneralizes from the examples

vision,
and inappropriately applies their specific style or content.
This occurs because the examples create a strong, localized
statistical pattern that the model, as a pattern-matching

engine, prioritizes over the primary instruction. A key finding

of this paper is the direct correlation between a model's
instruction-following fidelity and its susceptibility to "tunnel
vision." Models that are highly optimized to follow
instructions are more likely to rigidly adhere to the patterns
set by examples, even when a different approach is more
appropriate.

5.2. Mitigation Strategies

Several strategies can mitigate tunnel vision. This paper finds
that pinpointing the source of tunnel vision (e.g., a rigid
output format) and rephrasing that part of the prompt to be
more vague can improve generative flexibility. More advanced
strategies include:

Multi-Agent Frameworks: Using multiple LLM agents in
distinct roles (e.g., a "devil's advocate") to introduce
conflicting viewpoints into the context, forcing the primary
model to synthesize diverse perspectives (Mitra et al., 2023).

Cross-Modal Prompting: For vision-language tasks,
conditioning the LLM on both textual and visual examples
(e.g., class names and support images) can prevent it from
fixating on text labels while ignoring contradictory visual
evidence (Li et al., 2025).

Procedural Debiasing: Explicitly instructing the model to
engage in meta-cognition, such as by reflecting on and
critiquing its initial answer, can force a more rigorous
evaluation of its own thinking process.

6. Common Failure Modes in System Prompts

System prompts provide high-level, persistent instructions
but are susceptible to several failure modes that can degrade
performance and reliability (Tian et al., 2025).

Induction of Repetitive Output: A highly restrictive or
formulaic system prompt can create a narrow initial context,
making it more likely for the model to fall into a high-
probability generation loop from which it cannot escape. This
paper finds that this effect is magnified when combined with
in-context examples that reinforce the formulaic pattern.
Attempts to counter this by explicitly asking for creativity
are less effective than removing the restrictive examples
entirely.

Failure to Enforce Randomness: This paper finds that
system prompts systematically fail to enforce true
randomness or specified probabilities in natural language. An
LLM's core objective is to predict the most plausible text
sequence, not to execute a random number generator. A
phrase like "a 50% chance of rain" is interpreted as a
narrative element, not a command for a stochastic simulation.
True randomness must be controlled via API parameters
like temperature or top p.

Contextual Misapplication of Instructions: A model
may misapply system instructions by forcefully injecting
them into semantically inappropriate contexts. This occurs
because the model processes system instructions and user



data as plain text and may interpret a universal instruction
(e.g., "ALWAYS end with a disclaimer") as a syntactic rule
to be applied regardless of context. A more robust approach
is to frame instructions with conditional logic (e.g., "If you
provide financial advice, then add a disclaimer").

Attenuation of Efficacy over Long Contexts: The
effectiveness of a system prompt, typically placed at the
beginning of the context, tends to decrease as a conversation
grows. Due to recency bias, the model's attention weights the
most recent user turns more heavily, causing it to "forget" or
ignore initial instructions. Periodically re-injecting key
instructions or placing the most critical rules at the end of
the context block can counteract this attenuation.

7. Proposal: A Hypothesis-Driven Agentic Reasoning
(HDAR) Framework

While the techniques above can refine prompt outputs, they
do not fundamentally alter the model's reasoning process,
which can lead to correct answers derived from flawed logic.
To address this, this paper proposes a new prompting
architecture for agentic models: Hypothesis-Driven Agentic
Reasoning (HDAR). This framework structures the model's
process around the scientific method to improve reliability,
transparency, and contextual understanding, particularly
when working with large or complex datasets.

7.1. HDAR Framework

Hypothesis Formulation
Generate H;...H, and null hypothesis Ho aligned to task

l

Evidence Gathering via Tool Use

Execute directed queries to validate or refute each hypothesis

l

Iterative Deepening

Refine plans, drills, and queries when evidence is inconclusive

l

Falsification & Knowledge Acquisition

Record failures, constraints, and evidentiary gaps explicitly

l

Hypothesis Refinement & Iteration
Synthesize findings, prune Ho...H,, and relaunch targeted loops

l

Outcome: Evidence-supported hypothesis or upheld null hypothesis

Figure 4. The HDAR pipeline.

Hypothesis Formulation: Given a user's task or question,
the agent first leverages its general knowledge to formulate a
set of discrete, testable hypotheses (Hy, Ha, ..., Hy) that could
lead to a solution. It also formulates a null hypothesis
(Ho), such as "The information required to answer the
question is not present in the provided context," or "The task
cannot be accomplished with the available tools."

Evidence Gathering via Tool Use: For each hypothesis,
the agent devises an explicit plan to find supporting or
refuting evidence. This plan involves selecting and executing
tools (e.g., web search, database query, code execution) with
targeted queries designed to validate the specific hypothesis.
Tool use is directed and purposeful, not exploratory.

Iterative Deepening: If initial evidence gathering is
inconclusive, the agent refines its strategy. This "deepening"
can involve generating more specific search queries, breaking
down a problem into smaller sub-problems, or navigating
deeper into a data source (e.g., following links, querying
related database tables).

Falsification and Knowledge Acquisition: If, after a
predefined number of attempts or reaching the maximum
search depth, no supporting evidence is found, the hypothesis
is formally falsified. Crucially, the agent records the reason
for falsification (e.g., "API call failed," "Keyword search
returned no relevant documents"). This recorded failure
becomes part of the agent's working knowledge.

Hypothesis Refinement and Iteration: The agent
synthesizes the knowledge gained from verified or falsified
hypotheses to formulate a new, more informed set of
hypotheses. This loop continues until a hypothesis is
sufficiently supported by evidence to answer the user's query
or until all plausible hypotheses (including the null) are
tested.

7.2. Rationale and Benefits

This paper proposes that HDAR is the most reliable method
found to date for several reasons:

Enhanced Focus and Verification: Standard agentic tool-
calling often relies on broad, exploratory queries. This can
return a large volume of information that, while generally
relevant, may mislead the model or cause it to deviate from
a correct, high-probability answer already present in its
parametric knowledge. HDAR instead leverages the model's
general knowledge to first posit the most common or accepted
answer as the primary hypothesis. Tool use is then directed
at the narrow, confirmatory task of finding evidence for this
specific claim. This focused verification prevents the model
from being led astray by noisy, retrieved data and efficiently
validates its internal knowledge.

Deep Contextual Understanding: For large datasets
(e.g., a corporate knowledge base), standard Retrieval-
Augmented Generation (RAG) can retrieve superficially
relevant but contextually inappropriate information. HDAR



compels the model to first form a precise question (the
hypothesis) and then seek a specific answer, fostering a much
deeper and more accurate understanding of the available
context.

Transparent and Auditable Reasoning: A common
failure mode in LLMs is providing a correct answer for the
wrong reasons. The "reasoning" in a standard CoT output
can be plausible-sounding but logically flawed. HDAR makes
the reasoning process entirely transparent. By externalizing
its chain of hypotheses, evidence-gathering steps, and
falsifications, the agent's final conclusion is fully auditable,
allowing wusers to identify and correct gaps in its
understanding.

8. Conclusion

This paper has demonstrated conclusively that a one-size-fits-
all approach to prompt engineering is obsolete and that
subtle variations in prompt formulation can lead to
significant and predictable changes in LLM performance.

The findings presented here have critical implications for the
field. First, they provide a systematic framework for
practitioners to move beyond anecdotal best practices and
embrace the science of model-specific stylistic alignment.
Second, they call into question the robustness and validity of
existing LLM benchmarks. If a model's performance on a
benchmark can be altered significantly by simply rephrasing
the prompt in a way that better aligns with its inherent
stylistic affinity, then the benchmark may be measuring the
quality of its prompt as much as the capability of the model.

Finally, this paper proposed the Hypothesis-Driven
Agentic Reasoning (HDAR) framework as a path toward
more reliable and transparent Al systems. By structuring an
agent's reasoning process around the scientific method,
HDAR forces a model to ground its conclusions in verifiable
evidence, mitigating hallucination and revealing the logical
steps behind its outputs. This represents a move from simply
eliciting answers to engineering a trustworthy reasoning
process. Future work should focus on developing automated
methods for stylistic optimization and creating benchmarks
that are either robust to prompt variations or explicitly
designed to measure a model's stylistic sensitivity. By doing
s0, the field can ensure that LLM-driven systems are not only
powerful but also predictable, reliable, and truly aligned with
human intent.
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